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1 Introduction

People form close social and work relationships inside organizations such as firms and schools. A

distinguishing feature of close relationships is that they require significant time and energy. In this

paper we argue that these relationships are also persistent. We show how this persistence of close

relationships, in combination with their time-intensity, shapes the way agents form their networks

of close relationships and the resulting patterns of history dependence in these networks. Specifi-

cally, 1) agents’ networks tend to be front-loaded with co-workers they met near the beginning of

their careers, 2) turnover within a firm erodes this front-loading and leads to a U-shaped pattern of

history dependence for the networks of agents with careers of moderate length, and 3) members of

an agent’s hiring cohort tend to be disproportionately represented in his network. In an extension

to multiple firms, we show that when members of a network formed within a firm are subsequently

split across many firms, the desire to renew their successful working relationships can lead to job

referrals, and former co-workers who provide referrals will be drawn disproportionately from the

referred workers’ hiring cohorts at their previous employers.

In our model agents learn whether they get along well or work productively together by trying

to do so. If they discover they are well matched, they continue to socialize or work collaboratively

in the future, given the opportunities. Denoting a focal agent by ego and designating the others

in the organization as alters, we consider the set of alters with whom ego has learned he is well

matched to constitute his network of close relationships. The size of ego’s network, hence its value,

increases monotonically with his tenure toward its steady-state value, consistent with the typical

wage-tenure profile (see, e.g., Topel 1991).

Ego expands his network by trying out relationships with alters of unknown match quality and

learning with which new alters match quality is good. Adding members to his network becomes

increasingly costly, however, because close interaction with each one eventually interferes with

close interaction with the others, given limited time and energy. Considering an ego entering a new

environment, he will be most open to trying out relationships at the beginning, and less open later

when his network is growing large. Agents’ networks thus tend to be front-loaded with people they

met near the beginning of their organizational careers. At the same time there is turnover within

the organization, which tends to yield the highest shares in ego’s network of alters he met most

recently. We show that the interaction of these two forces leads to a U-shaped pattern of history

dependence for the networks of agents with careers of moderate length. That is, a longitudinal plot
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of the shares in ego’s network of alters against the dates in his career at which he met them will

have a U-shape for egos with careers of moderate length.

When turnover brings a new cohort of agents into the organization, they find that the agents al-

ready there are not very open to trying out new relationships, so the new agents try out relationships

with each other. A pattern of network links (close relationships) forms within the organization in

which within-cohort links are overrepresented. Our model thus gives rise to predictions about the

cross-section pattern of network links within an organization as well as predictions regarding how

individual networks evolve over time.

We will give the name “cohort attachment” to the tendency for within-cohort links to be over-

represented within an organization. This prediction of our model allows us to understand better

several related ideas and results in the literature. Wagner, Pfeffer, and O’Reilly III (1984, p. 76)

write, “Thus, because of the effects of free communication capacity and interest in forming rela-

tionships, persons who enter [the organization] at roughly the same time are more likely to com-

municate with each other than with those who entered either much earlier or later.” This idea is

used by Zenger and Lawrence (1989) to examine the impact of tenure similarity (equivalent to

time-of-entry similarity) on subsequent communication. They find that tenure similarity strongly

predicts the frequency with which engineers and engineering managers in the research division

of a medium-sized U.S. electronics firm communicate outside of their project groups. Bandiera,

Barankay, and Rasul (2008, Table 4) find that “same arrival date” is a strong predictor of friendship

among college students working on seasonal contracts picking fruit on a UK farm, controlling for a

wide range of ascriptive characteristics and potential correlates such as same living site. Chen-Zion

(2016, Chapter 2) uses matched employer-employee data for Brazil to examine which co-workers

an employee entrepreneur brings from a parent firm to his spinoff firm. He finds that parent firm

employees hired in the same first plant and same cohort as the entrepreneur were 21 percent more

likely to join him at the spinoff than other parent employees hired in the same first plant, control-

ling for similarity between co-worker and entrepreneur characteristics and for length of co-worker

tenure overlap with the entrepreneur at the parent firm.

In our model the value generated by each pairwise match does not depend on which other

matches form, and in the central case we analyze there are always enough agents of unknown

match quality with whom to explore matching. Thus there are neither network externalities nor

search and matching externalities, and egocentric networks form optimally from the social point of
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view. Departures from optimality and corrective policies can be analyzed starting from this base.

For example, network externalities could be present because the network of relationships in the

organization as a whole serves the often-studied function of diffusion of information. The whole

network may not be configured optimally to serve this function. Information could be bottled up

within hiring cohorts, a version of the “siloing” problem (Tett 2015). In this situation, suppose we

consider formation of special project work teams, the subject of a large literature (e.g., Chen 2005,

Reagans, Zuckerman, and McEvily 2007). When choosing from employees with relatively low

tenure, management should make sure that different hiring cohorts are represented on each team.

This need not be a concern for employees with high tenure because turnover will have eroded their

cohort network shares.

We can extend our model to allow members of ego’s network formed within an organization

who are subsequently split across many organizations to be his “contacts.” The desire of contacts

to renew their successful working relationships can lead to job referrals.1 We show that this value

of contacts causes agents to increase their target numbers of relationships, and provide sufficient

conditions under which they form qualitatively the same longitudinal and cross-sectional patterns

of network links within their organizations as in the model without contacts. Under these suffi-

cient conditions our model predicts that former co-workers who provide referrals will be drawn

disproportionately from the referred workers’ hiring cohorts at their previous employers.

In much of the existing theoretical literature on job referrals, networks are given exogenously

(e.g., Montogomery 1991, Calvo-Armengol and Jackson 2004). Galeotti and Merlino (2014)

model investment in contacts, but unlike in our model investment in contacts is not joint with

investment in intrafirm networks, because intrafirm networks are not covered. We do not con-

tribute to explaining to what extent firms use referrals, which is the subject of Galenianos (2013,

2014). Our work is more closely related to the small but growing empirical literature that examines

1Note that workers do not have incentives to provide “negative referrals” if not forced to renew unsuccessful rela-
tionships when former co-workers with whom they are poorly matched are hired. This corresponds to the central case
of our model in which agents of unknown match quality are always available to try out at the margin. The teamwork
motivation for referral has recently been confirmed experimentally by Pallais and Sands (2016). In randomized con-
trolled trials with referred job applicants, they report (p. 1796), “each referral completed one task with her referrer and
one task with another randomly chosen referrer. Referred workers performed substantially better when paired with
their own referrers.” They also report (Online Appendix, p. 3), “referrers were more than twice as likely to want to
partner again with their own referral as with someone else’s referral. Similarly, referred workers were substantially
more likely to want to work again with their own referrer than with someone else’s referrer.” On the other hand, Pallais
and Sands (p. 1793) “do not find evidence that referrals exert more effort because they believe their performance will
affect their relationship with their referrer or their referrer’s position at the firm.”
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job referrals from former co-workers (Cingano and Rosolia 2012, Glitz 2017, Saygin, Weber, and

Weynandt forthcoming, Eliason, Hensvik, Kramarz, and Skans 2019). These authors use adminis-

trative data from, respectively, Italy, Germany, Austria, and Sweden to identify worker overlap at

previous employers. They examine outcomes for workers displaced by firm closure. A worker’s

former colleagues are linked to his reduced unemployment duration or greater re-employment

probability (Cingano and Rosolia 2012, Glitz 2017), and his increased probability of being hired

at a former colleague’s plant (Saygin, Weber, and Weynandt forthcoming, Eliason, Hensvik, Kra-

marz, and Skans 2019). Using Brazilian data, Chen-Zion (2016, Chapter 1) extends the framework

of Saygin, Weber, and Weynandt (forthcoming) and finds that the presence of a hiring-cohort for-

mer co-worker increases the probability of job acquisition at a specific hiring plant nearly three

times more than the presence of a nonhiring-cohort former co-worker.

Our work is also related to, and has implications for, the peer effects literature. Both are

concerned with networks formed as a result of being in the same place at the same time. The current

state of the art in the peer effects literature is to examine peer groups created by random assignment

(see Sacerdote 2014 for a survey). Typically random assignment occurs at the beginning of the

agents’ tenure in an organization. A popular example is random assignment of college freshmen

to dorm rooms. The alters to which ego is randomly assigned are then found to influence a wide

range of his behaviors, from binge drinking to buying a new car. The results of our model suggest

that this influence would be much weaker if the random assignments occurred at the ends instead

of the beginnings of organizational careers, because egos will be less open to establishing new

relationships with the alters to whom they have been assigned. At the same time, persistence of

close relationships suggests that it would be worth pursuing follow-up studies of the influence of

randomly assigned peers.

In the next section we develop our model of network formation and history dependence for

one firm, and derive results for the longitudinal and cross-sectional structure of agents’ networks.

Section 3 extends the model to incorporate contacts and allow for job referrals across firms. Our

conclusions are in Section 4.

5



2 Network Formation Within One Firm

2.1 Model description and assumptions

We will consider the formation of personal networks by agents within an organization. It is con-

venient to call this organization a firm, but we believe that our model applies to network formation

in other institutional settings as well.

A key inspiration for our model is Jovanovic (1979). In his model, one worker meets with one

firm, and the pair learn about the quality of their match. Roughly speaking, if they learn that the

quality of their match is good, they stay together, and if they learn that the quality of their match

is bad, they separate. In our model, matches are between workers (agents) within a firm. Well

matched agents become members of each others’ networks (stay together), and poorly matched

agents avoid each other in the future (separate). Different from Jovanovic (1979), an agent can in

principle form matches with any number of other agents, up to the limit of all the agents in the

firm.

We will follow the evolution of agents’ networks in the firm over time t = {0, 1, 2, . . . }. These

agents are risk-neutral and symmetric. In every period, they engage in pairwise work relationships

or matches. Agents learn their match qualities with other agents by experience: at the end of every

period, the qualities of all unknown matches formed in that period are revealed.

Assumption 1. The firm is born at the beginning of period t = 0 with a continuum of agents with

mass equal to N .

The continuum assumption allows us to avoid integer problems. In this section, we will ignore

agents outside the boundary of the firm.

The firm undergoes a constant, exogenous rate of worker turnover:

Assumption 2. At the beginning of every period t = {1, 2, . . . }, a share δ of agents selected at

random separates from the firm, and the departing agents are replaced by a cohort of mass δN ,

where δ ∈ [0, 1].

This assumption serves two purposes. First, it creates network decay at a constant rate δ: an agent

who remains with the firm finds that a share δ of the agents with whom he would be well matched

disappears each period. Second, it creates a cohort structure for the firm in which every cohort

except the founding (t = 0) cohort is of equal initial size, and cohort size declines at a constant
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rate with tenure. When we analyze the cohort shares of agents’ networks, the patterns generated

by the interplay of forces in our model will stand out more clearly against this simple baseline.

We could decouple hiring from network decay, allowing the firm to grow or shrink in any period,

without affecting the longitudinal results in the next subsection, but we will note in subsection 2.3

that some of our cross-sectional results could be affected.

Remark. It is useful to consider what happens with extreme values of δ. If δ = 1, the firm is

re-created from scratch every period. Since the firm and its agents have no history, there can be no

analysis of history dependence in the agents’ networks. If δ = 0, the firm consists of a fixed set of

agents whose networks do not decay. This polar case is of some interest and will be covered in the

next subsection.

Each agent maximizes the discounted sum of his per-period payoffs. The next three assump-

tions concern these payoffs.

Assumption 3. Every match is one of two types determined by the surplus it yields to the matched

parties in the period in which it occurs: high quality yielding yH or low quality yielding yL (yH >

yL > 0).2 The unconditional probability that a match is high quality is p ∈ (0, 1).

The match surplus can be thought of as net of any benefit derived by the firm. We assume that the

firm, like its workers, prefers high to low quality matches. For example, the firm could receive a

fixed share of the value generated by any match. The assumption that the firm prefers high to low

quality matches is of no consequence in this section but is relevant in the next section when we

discuss job referrals.

As stated above, a match is a pairwise work relationship between risk-neutral agents. We

believe that work relationships are ubiquitous even where employees appear to work in isolation,

as in a typical cubicle environment, for example. Employees find others with whom they work well

solving non-routine problems or filling in for each other. They interact during breaks and lunch,

where good relationships boost morale and reduce absenteeism. The yield y from a match should

thus be interpreted flexibly. It could be money, such as a piece rate received by the agent pair for

the output or service they produce, or a sum of money and utility, as when an enjoyable workplace

relationship also raises productivity and thereby increases pay.

Assumption 4. Every match is of equal value to both parties, i.e., the matched parties divide the

surplus equally.
2This follows the Moscarini (2005) simplification of Jovanovic (1979).
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When the context is appropriate, it is possible to interpret this assumption as the outcome of Nash

bargaining with a disagreement point of (0, 0). For example, we could suppose that if the matched

parties cannot agree on who deserves how much credit, they cannot turn in their project to their

boss to get paid. When there are non-monetary benefits of the match, we are effectively assuming

that the “technology of friendship” divides the surplus equally.

Assumptions 3 and 4 imply that, in the period in which the match occurs, each agent receives
yH
2

when the match is high quality and yL
2

when the match is low quality. We assume that all

matches contribute equally, regardless of type, to an agent’s time and energy cost. Recalling that

every agent is symmetric, let zt be the total mass of matches formed by an agent in period t:

Assumption 5. The cost to an agent of forming zt matches is c(zt), where c(0) = 0, c′(zt) > 0,

c′′(zt) > 0 and limzt→∞ c
′(zt) =∞.

We assume c′′(zt) > 0 because, as the mass of work relationships grows, the agent gets tired, has

scheduling conflicts, etc.

Let us call the agent on whose decisions we are focusing ego and all other agents alters. In this

subsection and the next, without loss of generality we select ego from the founding cohort. This

saves on notation because period t is identical to ego’s tenure. In subsection 2.3 we consider egos

from later cohorts and introduce notation that allows us to distinguish ego tenure from time period.

In each period t, ego inherits from the previous period knowledge that allows him to partition

alters into three sets: alters with whom he knows he is well matched, alters with whom his match

quality is unknown, and alters with whom he knows he is poorly matched.

Definition. Network and network size We call the set of alters in his firm with whom ego knows

he is well matched at the end of the period his network. We call the mass of this set ego’s network

size and denote it by n.

We assume that, prior to his entry to the firm, ego has never matched with any other agent in the

firm and therefore has initial network size equal to zero. (We relax this assumption in Section 3.)

We denote the mass of the set of alters unknown to ego in period t by ut. The decisions that each

agent needs to make in any period are how many matches zt to form and with whom. Clearly ego

prefers to match with alters within his network before trying matches with unknown alters, and

prefers trying matches with unknown alters before matching with alters with whom he knows he is

poorly matched. Noting that ego inherits a network of size (1 − δ)nt−1 from the previous period,
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we can consider three cases: i) zt ≤ (1 − δ)nt−1; ii) (1 − δ)nt−1 < zt ≤ (1 − δ)nt−1 + ut; and

iii) zt > (1 − δ)nt−1 + ut. In case i), ego’s desired mass of matches is smaller than his surviving

network; in case ii), ego wishes to match with his network and also try out matches with unknown

alters; and in case iii), ego is willing to match with alters with whom he has not worked well

because there are not enough unknown alters.

We rule out case iii) by imposing an additional condition on the cost function, derived in Ap-

pendix A and expressed in terms of the model parameters, that prevents the mass of matches ego

desires to form from exceeding (1− δ)nt−1 + ut in equilibrium:

Assumption A. For δ ∈ (0, 1−
√

1− p), we assume c′(δN [1 + (1− δ)]) ≥ pyH+(1−p)yL
2

+ β(1−
δ)p (1−δ)(1−p)

1−β(1−δ)2(1−p)
yH−yL

2
. For δ = 0 or δ ≥ 1−

√
1− p), we assume c′(pN) ≥ pyH+(1−p)yL

2
+β(1−

δ)p (1−δ)(1−p)
1−β(1−δ)2(1−p)

yH−yL
2

.

Assumption A can be thought of as an addendum to Assumption 5. Intuitively, it states that if the

cost of matching rises sufficiently fast, case iii) will not occur. We will show in the next subsection

that case i) also never occurs. Therefore case ii) applies: ego always matches with an unknown

alter at the margin, ego matches with any alter within his network with probability one, and ego’s

desire to match with alters in his network is always reciprocated.

Remark. One of the most robust features of social networks is “homophily”: the tendency for

egos to be linked to alters who are similar to them along observable dimensions (McPherson,

Smith-Lovin, and Cook 2001). It is possible to incorporate homophily into our model. Suppose

we divide our continuum of agents into two types. Matches within type are identical to matches

between types, except that the former (latter) are of high quality with probability p′′(p′), where

p′′ > p′. Agents therefore match within type if they can. If case ii) prevails within type then

agents never match across types, so all matches are of high quality with probability p = p′′. The

same reasoning holds for more than two types, but as the number of types increases it becomes

increasingly unrealistic for there to be enough unknowns within type for case ii) to hold. In other

words, we can incorporate homophily into our model by reinterpreting p as the probability that a

match is of high quality within type and strengthening Assumption A sufficiently to ensure that

case ii) prevails within type.3

3Carrell, Sacerdote, and West (2013) created treatment Air Force squadrons with concentrations of high- and low-
ability students and found a negative impact on the academic performance of the low-ability students. They also found
evidence that this result occurred because the low-ability students were excluded from the social networks of the high-
ability students. We can see their treatment as having made it more likely that case ii) prevailed within the high-ability
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2.2 Longitudinal results

In this subsection we will build toward a complete longitudinal characterization of ego’s network.

We will find his network size as a function of his tenure at the firm and we will find the share of

his network accounted for by agents he met during each period of his tenure. To accomplish this

we need to derive the time path of ego’s matches with alters of unknown match quality.

We denote by xt the mass of matches ego chooses to form in period t with alters of unknown

match quality. He incurs matching costs c(zt) = c(xt + (1 − δ)nt−1). At the end of the period

match qualities are revealed and surplus is divided. Ego’s total per-period payoff is thus given by

the sum of his payoffs from matching within his network and matching outside his network less

his matching costs,

(1− δ)nt−1
yH
2

+ xt
pyH + (1− p)yL

2
− c(xt + (1− δ)nt−1).

His network size evolves according to

nt = (1− δ)nt−1 + pxt. (1)

We assume that if ego separates from the firm he is immediately hired by another firm, at which

he accumulates a new network. (We consider the possibility of unemployment in Section 3.) Ego’s

value function is then given by

V (nt−1) = max
xt
{(1− δ)nt−1

yH
2

+ xt
pyH + (1− p)yL

2
− c(xt + (1− δ)nt−1) + β[(1− δ)V (nt) + δV (0)]},

(2)

where β is the constant discount factor and δ in the continuation value term is the probability that

ego separates from his firm.

In Appendix B we show that the first-order condition reduces to

pyH + (1− p)yL
2

+β(1−δ)p (1− δ)(1− p)
1− β(1− δ)2(1− p)

yH − yL
2

= c′(xt+(1−δ)nt−1) ≡ c′(z∗). (3)

type. Chen-Zion (2016, Chapter 1) finds that controlling for homophily among all observable worker characteristics
reduces but does not eliminate the impact of same hiring cohort on job referrals from former co-workers, which is
consistent with the predictions of our model applying within type.
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Equation (3) states that ego sets the marginal cost of a match with an unknown alter equal to the

current period payoff plus the expected future payoff to having a larger network. We see from this

equation that ego forms a constant total mass of matches z∗ in every period. (Assumption A that

rules out case iii) above also ensures the existence of a z∗ that solves equation (3).) Equation (4)

then yields the mass of matches with unknowns that ego forms in any period:

xt = z∗ − (1− δ)nt−1. (4)

We can see from equations (1) and (4) that the increase in network size from its inherited value

(1− δ)nt−1 equals a fraction p of the difference between z∗ and (1− δ)nt−1, so if the initial value

of network size is less than z∗ then it can never exceed z∗. Since network size begins at zero, we

can rule out case i) above (zt ≤ (1− δ)nt−1).

We can substitute equation (4) into equation (1), yielding

nt = pz∗ + (1− p)(1− δ)nt−1.

We can then derive the complete time paths for network size and for the mass of matches with

unknowns ego forms in each period:

nt =
t∑

τ=0

(1− p)τ (1− δ)τpz∗ xt = z∗ − (1− δ)
t−1∑
τ=0

(1− p)τ (1− δ)τpz∗. (5)

Note that the expression for nt gives the value of network size at the end of the period. In particular,

for t = 0 the expression yields n0 = pz∗, but the value of network size at the beginning of period

0 is zero, which also implies x0 = z∗.

As t→∞, network size and the mass of matches of unknown quality ego forms approach their

steady state values:

nt → n̄ =
p

[δ + p(1− δ)]
z∗ xt → x̄ =

δ

[δ + p(1− δ)]
z∗. (6)

We see from equations (5) and (6) that nt increases monotonically from zero to its steady state

value, which never exceeds z∗. Note that steady state network size increases with the probability

of a good match and decreases with the rate of network decay. If the network does not decay

(δ = 0), then in the limit all matches are within network and matches with unknowns drop to zero.
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The firm becomes completely static, with a fixed set of agents and fixed relationships between

them.

Inspection of equation (5) establishes our first proposition:

Proposition 1. Ego’s mass of matches with unknowns xt declines monotonically with t.

Proposition 1 states that ego becomes monotonically less open over time to meeting alters of un-

known match quality. This occurs because ego’s network size increases monotonically with time

whereas his optimally chosen capacity for work relationships remains unchanged.

Clearly ego’s network is valuable to him, in that the same mass of work relationships without

a network yields less benefit. We can compute the value of a network of size nt−1 explicitly by

comparing V (nt−1) to V (0).4 Since

V ′(nt−1) =
(1− δ)(1− p)

1− β(1− δ)2(1− p)
yH − yL

2
, then

V (nt−1) =
(1− δ)(1− p)

1− β(1− δ)2(1− p)
yH − yL

2
nt−1 + V (0).

It follows that

V (nt−1)− V (0) =
(1− p)(1− δ)

1− β(1− δ)2(1− p)
(yH − yL)

2
nt−1.

Inspection of this expression establishes:

Proposition 2. The value of ego’s network is increasing in nt−1, decreasing in δ, decreasing in p,

increasing in β, and increasing in yH − yL.

Proposition 2 states that the value of ego’s network is increasing in (last period’s) network size,

decreasing in the rate of network decay, decreasing in the probability that a match with an un-

known is good, decreasing in the rate at which future payoffs are discounted, and increasing in the

difference between good and bad match values. Since matching within his network guarantees ego

a good match quality, his network is less valuable if the probability is high that a match with an

agent of unknown match quality is good or if the difference between good and bad match values

is small. Discounting reduces the value of ego’s network since part of its value is that ego has to

match with a smaller mass of unknowns in the future.
4It is straightforward to show that V (0) = z∗c′(z∗)−c(z∗)

(1−β) .
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Since nt−1 is monotonically increasing with time, we have the following corollary to Proposi-

tion 2:

Corollary 1. The value of ego’s network is monotonically increasing with his tenure at the firm.

We conclude this subsection with our results on history dependence. In our model an ego with

tenure t looking at his network retrospectively will see that he met the alters at various times t′.

We denote the mass of matches that were first formed in t′ that are still in ego’s network at the end

of t by nt(t′) = pxt′ if t = t′ and (1− δ)t−t′pxt′ if t > t′.

Definition. History dependence HDt(t
′) ≡ nt(t′)

nt
, the probability that a member of ego’s network

in t resulted from an initial meeting from a given previous period t′.

Substituting for xt′ in the expression for nt(t′) using equation (4) yieldsHDt(t
′) =

(1−δ)t−t′p[z∗−(1−δ)nt′−1]

nt
.

Note that if δ = 1, HDt(t
′) = 0 for t > t′: if network decay is complete, there is no history de-

pendence.

We see that the past time period t′ has two counteracting influences on our measure of history

dependence. On the one hand, since nt′−1 increases with t′, HDt(t
′) tends to decrease with t′,

reflecting the “front-loading” of agents’ networks caused by persistence of relationships and time

constraints as discussed above. On the other hand, since (1 − δ)t−t
′ increases with t′, HDt(t

′)

tends to increase with t′, showing how a constant rate of decay of network relationships tends to

establish a more conventional pattern of history dependence where more recent meetings are more

influential. We also see that HDt(t
′) is decreasing in t, so the longer is an agent’s tenure in a firm

the less is the influence on his network of meetings from any particular time in the past.

The influences of t′ and t on our measure of history dependence can be summarized in the

following proposition:

Proposition 3. Assume p > δ
(1−δ) . For δ > 0, there exists a t′ ≥ 1 such that HDt(t

′) is monoton-

ically decreasing in t′ for t′ < t′ and monotonically increasing in t′ for t′ > t′. Moreover, there

exists a t > t′ such that HDt(0) > HDt(t) for t < t and HDt(0) < HDt(t) for t > t.

The proof of Proposition 3, and all remaining proofs in this section, are in Appendix B.

Proposition 3 shows that when an agent’s tenure in a firm is sufficiently short (t ≤ t′), represen-

tation of alters in his network is least influenced by his most recent meetings and most influenced

by his very first meetings. With longer tenure (t > t′), the share of alters resulting from his most
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recent meetings increases relative to less recent meetings, creating a U-shaped pattern of history

dependence where ego’s network is dominated by alters he met at the beginning and most recent

periods of his organizational career. Eventually (t > t), the influence of the distant past diminishes

sufficiently that the most recent meetings account for the largest share of alters of any period.

Let us consider two informative special cases. It is helpful if from this point forward we denote

firm age by T .

Example 1: δ = 0. We have nt(t′) = pz∗[1−
∑t′−1

τ=0 (1−p)τp] = pz∗[1−1+(1−p)t′ ] = pz∗(1−p)t′ .
That is, as we move from the past toward the present, HDt(t

′) decreases at rate (1− p).

Example 2: δ > 0, T large so that nT ≈ n̄. In this case x̄ = δn̄
p

, HDT (T ) ≈ px̄
n̄

= δ, and

HDT (t′) ≈ δ(1 − δ)T−t
′ . That is, as we move t′ from the present toward the past, HDT (t′)

decreases at rate (1− δ).

The second example shows that, for any positive rate of network decay, a conventional pattern of

network history dependence will be established if a sufficient amount of time passes. For relatively

short time horizons or small rates of network decay, the greatest representation in ego’s network

will be from alters he met early in his career at the firm.

Figure 1: History Dependence
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Figure 1 calculates the time pattern of history dependence for various lengths of ego tenure

at the firm, where time is measured in years to build intuition. The calculation assumes an even

bet that matches are of high quality (p = 0.5) and a 20 percent rate of network decay per year

(δ ≈ 0.018, where the underlying periods are months, the typical unit used to measure tenure

in administrative data). At three years of tenure, more than 60 percent of ego’s network consists

of alters he met in his first year at the firm. We also see that the U-shaped pattern of history

dependence already appears, with greater representation of alters met during ego’s third year at

the firm than during his second. At nine years of tenure, representation of alters met during ego’s

most recent year at the firm finally surpasses representation of alters met during his first year. After

fifteen years of tenure ego’s pattern of history dependence is dominated by network decay.

2.3 Cross-sectional results

Absent retrospective interviews, we cannot see in what periods ego initially met with which alters.

Alters are, however, horizontally differentiated by cohort of entry to the firm, which is much more

easily observable. A natural analog to HDt(t
′) is the share of each cohort in ego’s network at time

t. This equals the probability, conditional on remaining in the firm at time t, that a given alter in

each cohort belongs to ego’s network, multiplied by cohort size and divided by ego’s network size.

Insofar as one can observe alters’ exit from as well as entry to the firm, the conditional probability

is of independent empirical interest. In this subsection we will prove two results on the conditional

probability that a given alter in each cohort belongs to ego’s network and two results on cohort

shares of ego’s network.

Let us denote cohort by c. Tenure of an agent in cohort c is given by t − c. For the founding

cohort, tenure is given by t− 0 = t. However, we can no longer afford the notational convenience

of using the founding cohort to represent all cohorts. We will now denote network size and mass

of matches with agents whose match quality is unknown by nct and xct , respectively. To compute

nct and xct , we can use equation (5) substituting t − c for t. For example, xcc = z∗, and xc−1
c =

z∗ − (1− δ)pz∗.
Let P c

t (c′) be the probability that a given alter in cohort c′ is in the network of a given ego in

cohort c at the end of period t, conditional on his remaining with the firm. Let Lct be the mass of

matches with unknown alters formed in period t by agents whose match quality is unknown to a

given ego in cohort c. Noting that P c
t (c′) equals p times the probability that a given alter in cohort
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c′ who remains with the firm is of known match quality to a given ego in cohort c at the end of

period t, we have

P c
t (c′) =

 0 if t < max{c, c′}

P c
t−1(c′) + [1− P ct−1(c′)

p
]pxct

xc
′
t

Lct
if t ≥ max{c, c′}

(7)

Lct =

 N(1− δ)tx0
t +

∑t
c′=1 δN(1− δ)t−c′xc′t if t = c

N(1− δ)t[1− P ct−1(0)

p
]x0
t +

∑t
c′=1 δN(1− δ)t−c′ [1− P ct−1(c′)

p
]xc
′
t if t > c

(8)

Equations (7) and (8) provide recursive solutions for P c
t (c′) and Lct . We can use these solutions

to compute the share Sct (c
′) of any cohort c′ in the network of an ego in cohort c at the end of period

t:

Sct (c
′) = P c

t (c′)N c′(1− δ)t−c′/nct (9)

where N c′ = N if c′ = 0 and N c′ = δN if c′ > 0.

Despite the complex, recursive formulas for P c
t (c′) and Sct (c

′), we are able to derive some

useful analytical results. First, we show that the conditional probability that an alter from ego’s

own cohort is a member of his network is greater than the conditional probability that an alter from

any incumbent cohort is a member of ego’s network:

Proposition 4. P c
t (c) > P c

t (c′) for all c′ ∈ [0, c− 1], for all t ≥ c.

The intuition for Proposition 4 is provided by Proposition 1: alters become monotonically less

open to meetings with unknowns as their tenure increases. Proposition 4 applies to incumbent co-

horts. Does the intuition for Proposition 4 apply to later cohorts, since ego becomes monotonically

less open to meetings with unknowns as his tenure increases? Yes, but this intuition is insufficient.

It is possible that, because some alters are known to him, fewer total meetings with unknowns will

be available to ego when he first meets with later cohorts than were available when he first met

with his own cohort, raising P c
c′(c
′) relative to P c

c (c) for c′ > c and creating the possibility that

P c
t (c′) > P c

t (c) for some c′, t. The condition stated in Lemma 1 eliminates this possibility:

Lemma 1. If z∗/N is sufficiently small, xct/L
c
t > xct+b/L

c
t+b for all b ∈ [1, T − c], for all t ≥ c.

The Lemma states that the ratio of desired to available meetings with unknowns by ego in

cohort c is greater in period t than b periods later. It follows from diminishing openness to meetings
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with unknowns that desired meetings decrease from period t to t+ b, and the condition that z∗/N

is sufficiently small prevents any reduction in available meetings from overturning the result. Note

that if we were to weaken Assumption 2 by decoupling firm hiring from network decay (layoffs),

firm shrinkage could undermine Lemma 1. This in turn would make it possible for the next two

propositions (but not Propositions 1-4) to fail.

With Lemma 1 in place, we can prove a parallel to Proposition 4 for cohorts that arrive after

ego’s cohort:

Proposition 5. If z∗/N is sufficiently small, P c
t (c) > P c

t (c′) for all c′ ∈ [c+ 1, T ], for all t ≥ c′.

Together, Propositions 4 and 5 demonstrate cohort attachment: conditional on remaining with the

firm, a member of ego’s own cohort is more likely to belong to his network than is a member of

any other cohort.

Remark. Consider a change in perspective from the egocentric networks of the agents in the firm

to the network of relationships in the firm as a whole, and measure “clustering” by the average

probability that agents j and k have a relationship given that both have a relationship with i (Jack-

son 2008, p. 35). Since probabilities of relationships in our model are independent, as in a random

graph, this clustering measure simply equals the average probability that two agents have a re-

lationship. Considering a cohort or collection of cohorts as subnetworks of the firm network,

Propositions 4 and 5 imply that clustering is greater for any one cohort than for any collection of

cohorts.

Our results for cohort shares of ego’s network differ from our results for conditional probabil-

ities of belonging to ego’s network because they incorporate network decay. Over time, network

decay erodes the dominant position of ego’s own cohort in his network and opens up space for

more recent cohorts.

Proposition 6. Consider a firm of age T ≥ 2. If z∗/N is sufficiently small and δ[1+δp/2(1−p)] <
1/2, then Sct (c

′) reaches its maximum over cohorts c′ ∈ [1, T ] at cohort c for at least the two most

recent cohorts, i.e., c ∈ [T − 1, T ].

The condition on δ in Proposition 6 is needed because otherwise the higher conditional proba-

bility that an alter in ego’s network is in ego’s own cohort than in the next cohort is dominated by

turnover of his own cohort.5 However, any positive rate of turnover must eventually cause the own
5It can be shown that the upper bound on δ in Proposition 6 lies between 0.472 and 0.5, depending on the value of

p.
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cohort network share to fall below the share of the most recent cohort.

Proposition 7. If z∗/N is sufficiently small and T − c is sufficiently large, Sc
′
T (T ) > Sc

′
T (c′) for all

cohorts c′ ∈ [1, c].

The founding cohort (c = 0) is excluded from Propositions 6 and 7 because, under the condition

on δ given in Proposition 6, it is of larger initial size than all the other cohorts.

The two propositions combined predict that the networks of more recent cohorts are dominated

by agents that joined the firm at or near the same time as themselves, the networks of the oldest

cohorts are dominated by the most recent cohorts, and the networks of agents with intermediate

tenure are dominated by a combination of cohorts close to their own and the most recent cohorts.

Figure 2: Cohort Network Shares
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Figure 2 illustrates Propositions 6 and 7. It imitates Figure 1: the parameters p and δ are the

same, the firm is 15 years old, the underlying periods are months that are aggregated into years

to build intuition, and the plots are for egos with 3, 9, and 15 years tenure. More specifically, the

egos we plot are assigned to the seventh month of their cohort years, so that the egos with 3, 9, and

15 years tenure entered the firm in the seventh month of years 13, 7, and 1, respectively. We see
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that the share of own cohort year in the network of the ego with 3 years tenure is four times that

of any other cohort year, whereas the share of own cohort year in the network of the ego with 9

years tenure is only slightly larger than the shares of the most recent cohorts, and the most recent

cohorts are clearly the largest in the network of the ego with 15 years tenure. Figure 2 also shows

that by the end of their cohort years the egos’ networks are essentially in the steady state given

by equation (6), so that the network shares of all cohorts arriving later are virtually equal across

the egos despite their different tenures. The reason for the downturn in cohort network share at

T is that for the first few periods after an alter enters the firm his probability of having met ego

increases at a faster rate than δ.

3 Contacts and Job Referral

Job referrals are a canonical application of network models in economics. The small but growing

empirical literature cited in our Introduction specifically analyzes job referrals to ego from alters

he met in previous employment.6 This indicates the importance of exactly the kind of history-

dependent network formation we emphasize in this paper. However, a job referral necessarily

connects an ego outside a firm to alters inside the firm, whereas our model has focused entirely on

network formation and operation within a firm (or, more broadly, within any one organization).

In this section ego will take into account the value that alters may provide for him if he separates

from his firm. We will find conditions under which the qualitative results of the previous section do

not change despite this added complexity, and for a special case we will determine the quantitative

changes in ego’s network formation program. This extension of our model allows us to predict

which alters are more likely to generate job referrals for ego.

Let us extend our model to include many firms, finite in number. We assume that an agent can

be employed by at most one firm in any period. An agent who does not work for any firm in a

given period is unemployed in that period. Firms can form or dissolve. We assume an exogenous,

constant probability of firm dissolution.

We only consider referrals of unemployed agents to firms. The pool of unemployed is filled by

the exogenous separations of the previous section and by exogenous firm dissolution.7 The pool
6There is a much broader job referral literature, which covers all types of connections between egos and alters

rather than focusing on those formed through previous work at a common employer. For surveys see Ioannides and
Loury (2004) and Topa (2011).

7The small empirical literature cited above has only considered referrals of egos who are unemployed because their
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of unemployed is drained by firms replacing the workers who separated from them and by the

founding of new firms. The mass of hires, respectively δN and N , is exogenous.

When alters in ego’s network separate from him because they or ego leave their firm or because

their firm dissolves, they become the contacts of ego.

Definition. Contacts Alters with whom ego knows he is well matched but who are not in ego’s

current organization are the contacts of ego.

A contact is different from an alter in ego’s network because, in the current period, ego cannot

form a match with him. Ego therefore neither derives value nor incurs costs from his contacts in

the current period. We assume that ego’s contacts return to unknown match quality at a constant,

exogenous rate, as ego and alters “drift apart” over time following separation from their common

employer. This is consistent with the results of Eliason, Hensvik, Kramarz, and Skans (2019),

who find that former co-workers are an important source of job referrals “especially if they worked

together relatively recently (i.e., the value of the connection seems to depreciate over time).”

In line with the referral literature, we assume an information structure such that a firm only

knows of contacts that are brought to its attention by its current employees. In particular, the

firm is unaware of contacts that may exist between the unemployed workers themselves. If the

firm knew of such contacts, it might want to hire a “ready-made” network of unemployed workers.

Under our assumed information structure, and given the assumption in the previous section that the

firm prefers high to low quality matches, it is clear that the interests of the firm’s employees and the

firm are aligned. The employees want the firm to be aware of their contacts among the unemployed,

and the firm wants to hire the unemployed workers with the greatest mass of contacts among its

employees. The firm will rank the unemployed by these masses and hire until all vacancies are

filled or until it exhausts all unemployed with positive masses, in which case we assume it chooses

randomly among the remaining unemployed.8

Recall that ego’s contacts are alters who were formerly in his networks. When ego meets alters,

previous firms dissolved. By focusing on egos whose firms have closed, these papers avoid a potential selection bias
from studying egos who have been laid off from thriving firms.

8The two cases have different implications for the relationship between an unemployed worker’s mass of contacts
at a firm and the probability that he is hired. In the case where all unemployed workers with positive masses are hired,
this probability takes a discrete jump when the worker’s mass increases from zero to positive, then remains constant.
In the case where not all unemployed workers with positive masses are hired, this probability strictly increases with
the worker’s mass of contacts at the firm. Saygin, Weber, and Weynandt (forthcoming) use as their proxy for referral
an indicator for whether the number of former co-workers at the hiring firm is positive, which corresponds to our case
where all unemployed workers with positive masses of contacts at the firm are hired.
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then, he recognizes that in the future they may become contacts who help him out of unemployment

through referral. We greatly simplify ego’s decision problem by assuming there is only one round

of referral, so that workers hired through referral cannot refer other workers in turn. In this case, an

alter’s contacts are of no consequence to ego: if an alter is hired because of his contacts, he cannot

refer an unemployed ego by assumption. Alters in his firm therefore remain symmetric from ego’s

point of view within the three sets delineated in the previous section: alters with whom he knows

he is well matched, alters with whom his match quality is unknown, and alters with whom he

knows he is poorly matched.

We would like the results of the previous section, including cohort attachment, to continue

to apply to the networks that egos form with workers who were of unknown match quality to

them when they or the workers joined their firms. The key to retaining these results is retaining

Proposition 1: ego becomes monotonically less open over time to meeting alters of unknown match

quality.

We can see immediately that ego’s behavior in the previous section is not qualitatively changed

by the prospect of dissolution of his employer. From ego’s point of view separation from his

current firm and dissolution of his current firm are equivalent, so he can add the probabilities

together, leaving the results obtained in the previous section qualitatively unchanged.

Likewise, being hired through referral does not in itself qualitatively change ego’s subsequent

behavior, provided his mass of contacts at the hiring firm is small (in particular, smaller than his

steady state network size). It only means that his initial network size is positive rather than zero.

The two changes made to our model in this section that threaten Proposition 1 are 1) ego’s

network at his current employer grows when his employer hires his contacts as well as when he

matches with unknowns, and 2) ego has an additional incentive to match with unknowns, because

they could turn out to be useful contacts in the future. 1) becomes a problem if the firm tends

to hire ego’s contacts early rather than late in his tenure, because this will cause his demand for

matches with unknowns to increase rather than decrease over time. 2) becomes a problem if ego’s

marginal value of adding contacts grows with his stock of contacts, causing his desired mass of

matches zt to increase over time.

We now re-solve ego’s problem in the previous section incorporating the changes to our model

in this section, under the assumptions that 1) the firm hires an exogenous mass of ego’s contacts

each period, and 2) ego’s marginal value of adding contacts does not increase with his stock of
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contacts. We show that ego’s desired total mass of matches remains constant if his marginal value

of adding contacts is constant, and decreases over time if his marginal value of adding contacts is

decreasing. An additional condition limiting the decrease in firm hiring of ego’s contacts ensures

that his demand for matches with unknowns declines monotonically with time. Hence these as-

sumptions and condition are sufficient to retain our qualitative results from the previous section for

ego’s network with workers who were of unknown match quality to him when he or the workers

joined the firm.

If the cohort attachment result continues to apply to ego’s network in any firm, it will extend

to his contacts as well. That is, just as co-workers in ego’s cohort are more likely to belong to

his network, former co-workers who were in ego’s cohort are more likely to be his contacts. If

former co-workers who were in ego’s hiring cohort are more likely to be his contacts, they are

more likely to generate referrals for him. This is the most readily testable prediction we can add

to the existing empirical literature on job referrals, with Chen-Zion (2016, Chapter 1) cited above

being a first attempt in that direction. Note that our prediction does not apply to former co-workers

who referred or were referred by ego, because they were not of unknown match quality to him

when he or the workers joined the firm.

We introduce some new notation:

rt = mass of ego’s contacts hired by his employer at the beginning of period t

gt = ego’s stock of contacts at the beginning of period t.

We now have two state variables, nt and gt. The equations of motion are

nt = (1− δ)nt−1 + rt + pxt

gt = (1− ψ)gt−1 + δnt−1,

where ψ is the rate at which ego’s contacts return to unknown match quality.

We must now distinguish between ego’s value function when employed, V (nt−1, gt−1), and his
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value function when unemployed, Vu(gt). We have9

V (nt−1, gt−1) = max
xt
{[(1− δ)nt−1 + rt]

yH
2

+ xt
pyH + (1− p)yL

2
− c(xt + rt + (1− δ)nt−1)

+ β[(1− δ)V (nt, gt) + δVu(gt)]}. (10)

We assume that Vu(gt) is concave, so that V ′′u ≤ 0. In the case where the marginal value of adding

contacts V ′u is constant, we can find a closed-form solution for xt as we did in Section 2. In the case

where V ′u is decreasing, we cannot find a closed-form solution for xt but can show that it declines

monotonically with time.10

The first order condition yields

pyH + (1− p)yL
2

+ β(1− δ)p∂V
∂nt

= c′(xt + rt + (1− δ)nt−1). (11)

In Appendix B we show that, if V ′u is constant, we obtain a constant solution for ∂V
∂n

:

∂V

∂n
=

(1− δ)(1− p)yH−yL
2

+ βδ2V ′u[1 + β(1−δ)(1−ψ)
1−β(1−δ)(1−ψ)

]

1− β(1− δ)2(1− p)
. (12)

Except for the term including V ′u, the right-hand side of this expression is the same as the right-

hand side of the expression for V ′(n) in Section 2. Substituting back into the first-order condition,

we obtain the equivalent of equation (3):

pyH + (1− p)yL
2

+ β(1− δ)p
(1− δ)(1− p)yH−yL

2
+ βδ2V ′u[1 + β(1−δ)(1−ψ)

1−β(1−δ)(1−ψ)
]

1− β(1− δ)2(1− p)

= c′(xt + rt + (1− δ)nt−1) ≡ c′(ẑ∗), (13)

where ẑ∗ is the constant mass of matches that ego forms in every period. A comparison of equations

(3) and (13) shows that the left-hand side of equation (13) is strictly larger if V ′u > 0. We have

therefore proven that ẑ∗ > z∗, where z∗ solves equation (3):

9To conserve on notation we treat the probability of dissolution of the firm as negligible relative to the probability
δ of separation from the firm. Denoting the firm dissolution probability by δ̃ and writing β[(1− (δ + δ̃))V (nt, gt) +
(δ + δ̃)Vu(gt)] in equation (10) would leave our results qualitatively unchanged.

10The marginal value of adding contacts will be influenced by the marginal impact of contacts on the probability
of finding a new job and on the value of a new job. Endogenizing the marginal value of adding contacts in general
equilibrium is left to future research.
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Proposition 8. If the marginal value of adding contacts V ′u is constant and positive, ego forms a

constant mass of matches in every period, and this mass is strictly greater than when contacts have

no value.

Intuitively, a constant, positive marginal value of adding contacts gives ego a constantly greater

incentive to form matches relative to the model of Section 2 in which contacts have no value.

Note that to maintain xt > 0 we must assume the exogenous masses of referrals satisfy rt <

ẑ∗ − (1− δ)nt−1: the firm does not hire such a large mass of ego’s contacts in any period that ego

does not want to match with unknowns. Next we add a restriction on changes to this restriction on

levels of rt.

Given Proposition 8, as ego’s network grows the mass of matches he seeks with agents of

unknown match quality must decline, provided his firm does not decrease its hiring of his contacts

(who are of known match quality) too fast. In Appendix B we prove:

Proposition 9. If the marginal value of adding contacts V ′u is constant, xt decreases monotonically

with time if the firm’s hiring of ego’s contacts satisfies

[1− (1− δ)(1− p)]rt − rt+1 < (1− δ)t+1(1− p)tpẑ∗, where ẑ∗ is determined by equation (13).

One way to put some structure on rt is to note that while ego is employed at the firm his stock of

prior contacts is decreasing at rate ψ. It is then reasonable to think that the firm’s hiring of ego’s

contacts will decrease at the same rate: rt+1 = rt(1 − ψ). In this case ψ < (1 − δ)(1 − p) is a

sufficient condition for xt to decrease monotonically.

We conclude by considering the case where V ′′u < 0. We immediately see that our constant

solution above for ∂V/∂n can no longer hold since V ′u will decrease as g increases over time,

causing ∂V/∂n to decrease rather than remain constant if equation (12) holds. Indeed, ∂V/∂n

decreasing over time is precisely what we want to show, because we can see from the first order

condition (11) that this implies the desired mass of matches ẑ∗t will decrease with time, which will

reinforce the monotonic decrease of xt.

Standard arguments show that V is concave, hence ∂2V/∂n2 ≤ 0. What remains to be shown

is ∂2V/∂n∂g ≤ 0. Then, as n and g increase toward their steady state values, ∂V/∂n (weakly)

decreases over time. The proof that V ′′u < 0 implies ∂2V/∂n∂g ≤ 0 is given at the end of Appendix

B.

As before, to maintain xt > 0 we must assume that the exogenous masses of referrals satisfy

rt < ẑ∗t − (1 − δ)nt−1. A final concern is that with ẑ∗t decreasing rather than constant, the logic
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we used in the model without contacts to rule out zt ≤ (1− δ)nt−1 (case i) in Section 2) no longer

applies. Since it is easily shown that ẑ∗t cannot decrease below z∗, to rule out this case it is sufficient

to ensure that (1− δ)nt−1 cannot increase to z∗. A low enough value of p, a high enough value of

δ, or some combination will ensure this.

4 Conclusions

When chance meetings reveal compatibility, the agents involved have incentives to maintain their

relationships. Accumulating relationships becomes increasingly costly, however, causing agents

to become less open to chance meetings over time. The interaction of this dynamic with turnover

leads to Proposition 3 in our paper, describing for an egocentric network in an organization the time

pattern of history dependence as a function of ego’s tenure in the organization. Mutual openness of

newly arrived agents also leads to the cross-section prediction of “cohort attachment,” a tendency

for members of ego’s hiring cohort to be disproportionately represented in his network. In an

extension of our model we allowed members of ego’s network who are subsequently split across

many organizations to be his “contacts.” The desire of contacts to renew their successful work-

ing relationships leads to job referrals. We provide sufficient conditions under which agents form

qualitatively the same longitudinal and cross-sectional patterns of network links within their orga-

nizations as in the model without contacts. Under these sufficient conditions our model predicts

that former co-workers who provide referrals will be drawn disproportionately from the referred

workers’ hiring cohorts at their previous employers.

In addition to homophily, non-mechanical theories of network formation emphasize contin-

gency (e.g., Small and Sukhu 2016) and strategy (e.g., Jackson and Wolinsky 1996). Random

matching with agents of unknown match quality places our model clearly in the former group.

Our contribution shows that contingency does not imply complete unpredictability. On the con-

trary, the time structure induced by the persistence and costliness of relationships allows us to

make a number of testable predictions. More broadly, we hope our model helps investigators to

“see” endogenous networks, just as we can see networks based on ascriptive characteristics such

as subcaste (Munshi and Rosenzweig 2016).

Our prediction of cohort attachment receives some tentative support from the papers cited in

our Introduction, though clearly more work is needed. In the future, surveys of individuals in
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organizations could map out the times at which they met the alters in their networks and thus di-

rectly test Proposition 3. Data at the firm rather than individual level could also be relevant if the

agents in our model were firms instead of individuals, establishing relationships with other firms.

Proposition 3 then suggests, for example, that the networks of young firms would be dominated by

the clients and suppliers with which they were matched at startup, whereas the networks of firms

that survive to “maturity” would be dominated by more recent clients and suppliers. As Chaney

(2014) and others have shown, modeling firms as agents forming networks can be especially pro-

ductive for the study of international trade. Our model could help to interpret and add structure to

the history dependence in international trade found in the work of Eichengreen and Irwin (1998)

and Head, Mayer, and Ries (2010). The generality of our framework should accommodate many

applications.
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Appendices

A Conditions Ensuring Sufficient Availability of Agents of Un-

known Match Quality

We derive conditions on the cost of matching that ensure that agents will not desire to form so

many matches that they have to form matches they know to be of low quality. That is, our sufficient

conditions ensure that in equilibrium there are more agents of unknown match quality to ego than

the number of matches he desires to form outside his network.

We start with the special case δ = 0, so the set of agents is fixed. We assume that enough

unknowns are available to ego in every period, then derive a condition under which this assumption

holds. Under this assumption, ego builds his network as described by equations (4) and (5) (with

δ = 0). In period 0 he meets with x0 = z∗ unknowns, yielding a network of size n1 = pz∗ in

period 1. In period 1 he meets with x1 = z∗ − pz∗ unknowns, and so on. Thus in any period t

one can compute the total number of matches ego has formed with unknowns by dividing nt from

equation (5) by p. As shown in equation (6), with δ = 0 nt reaches its maximum, steady state

value at z∗. Hence ego can never have matched with more than z∗/p unknowns. Since all agents

are initially unknown to ego, the condition z∗/p ≤ N is sufficient to ensure that ego never runs out

of unknowns with whom to match.

Now we consider the main case δ > 0, so that agents enter the firm in cohorts. We will show

that the candidate sufficient condition z∗/p ≤ N is too weak when small δ is combined with large

p, and derive an alternative sufficient condition. Recall that P c
t (c′) is the probability that a given

alter in cohort c′ is in the network of a given ego in cohort c at the end of period t, conditional on

the alter remaining with the firm. It follows that P c
t (c′)/p is the probability that an ego in cohort

c has met with a given alter in cohort c′ by the end of period t, conditional on the alter remaining

with the firm. Since P c
t (c′)/p was derived by dividing the demand for matches by ego with a given

unknown alter by the supply of matches by all unknown alters, we want a condition that ensures

P c
t (c′)/p ≤ 1.

Consider the polar case p = 1. Derivation of the sufficient condition is greatly simplified

by Propositions 4 and 5, which imply P c
t (c)/p > P c

t (c′)/p for c′ 6= c. (Proposition 5 itself is

conditioned on “z∗/N small enough,” but it can be shown that for p = 1 this condition is satisfied
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if z∗/N < 1, which is equivalent to our weaker sufficient condition.) We therefore only need a

condition sufficient for P c
t (c)/p ≤ 1.

When p = 1 every alter is of high match quality. Each agent therefore makes z∗ matches with

alters of high match quality in his entry period and δz∗ replacement matches in every subsequent

period. It follows that the number of matches with unknowns sought by every incumbent alter

in the period ego enters the firm (and every subsequent period) is fixed at its minimum value

δz∗. Using this information along with equations (7) and (8) allows us to compute P c
c (c)/p =

z∗/[N(1 − δ)δ + δN ] = z∗/δN [1 + (1 − δ)]. Setting z∗ = δN [1 + (1 − δ)] therefore yields

P c
c (c)/p = 1. From equation (7) we see that P c

c (c)/p = 1 implies P c
t (c)/p = 1 for all t > c.

We also see from equation (7) that P c
t (c)/p is monotonically increasing in z∗ for all t ≥ c. Hence

z∗ ≤ δN [1 + (1 − δ)] is sufficient to ensure P c
t (c′)/p ≤ 1 for all t ≥ c when δ > 0 and p = 1.

Finally, inspection of equations (7) and (8) shows that reducing p below 1 decreases P c
c (c)/p since

the numerator remains unchanged and the denominator increases, after which P c
t (c)/p cannot rise

above 1 for t > c provided z∗ ≤ δN [1 + (1− δ)].
We can now summarize. For p ∈ (0, 1) and δ = 0, the condition z∗ ≤ pN is sufficient to ensure

that ego never runs out of unknowns with whom to match. For p ∈ (0, 1) and δ > 0, the condition

z∗ ≤ pN may be too weak if δN [1 + (1 − δ)] < pN or δ < 1 −
√

1− p, in which case we use

z∗ ≤ δN [1 + (1 − δ)] as our condition sufficient to ensure that ego never runs out of unknowns

with whom to match.

We must translate these conditions on z∗ into the primitives of our model. We assume that the

cost of matching rises sufficiently fast that the desired number of matches z∗ falls below the levels

in the relevant inequalities:

Assumption A. For δ ∈ (0, 1−
√

1− p), we assume c′(δN [1 + (1− δ)]) ≥ pyH+(1−p)yL
2

+ β(1−
δ)p (1−δ)(1−p)

1−β(1−δ)2(1−p)
yH−yL

2
. For δ = 0 or δ ≥ 1−

√
1− p), we assume c′(pN) ≥ pyH+(1−p)yL

2
+β(1−

δ)p (1−δ)(1−p)
1−β(1−δ)2(1−p)

yH−yL
2

.

The right-hand sides of the inequalities in Assumption A equal c′(z∗) by equation (3), and therefore

imply the inequalities δN [1 + (1− δ)] ≥ z∗ and pN ≥ z∗, respectively.

B Derivations and Proofs

Derivation of equation (3).
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From equation (2) in the text, the first-order condition yields

pyH + (1− p)yL
2

+ β(1− δ)V ′(nt)p = c′(x∗t + (1− δ)nt−1).

Note that

V ′(nt−1) = (1− δ)yH
2
− (1− δ)c′(x∗t + (1− δ)nt−1) + β(1− δ)V ′(nt)(1− δ)

+

[
pyH + (1− p)yL

2
+ β(1− δ)V ′(nt)p− c′(x∗t + (1− δ)nt−1)

]
∂x∗t
∂nt−1

.

The coefficient on ∂x∗t
∂nt−1

equals zero by the first order condition. We also use the first-order condi-

tion to substitute for c′(x∗t + (1− δ)nt−1), obtaining

V ′(nt−1) = (1− δ)yH
2
− (1− δ)

[
pyH + (1− p)yL

2
+ β(1− δ)pV ′(nt)

]
+ β(1− δ)V ′(nt)(1− δ)

= (1− δ)(1− p)yH − yL
2

+ β(1− δ)2(1− p)V ′(nt).

This is a linear difference equation for V ′(nt), which admits a constant solution

V ′(nt−1) = V ′(nt) =
(1− δ)(1− p)

1− β(1− δ)2(1− p)
yH − yL

2
.

The constant solution is the only solution that satisfies the transversality condition.11 We can

substitute it back into the first-order condition to obtain

pyH + (1− p)yL
2

+ β(1− δ)p (1− δ)(1− p)
1− β(1− δ)2(1− p)

yH − yL
2

= c′(xt + (1− δ)nt−1) ≡ c′(z∗),

which is equation (3) in the text.

Proposition 3. Assume p > δ
(1−δ) . For δ > 0, there exists a t′ ≥ 1 such that HDt(t

′) is monoton-

ically decreasing in t′ for t′ < t′ and monotonically increasing in t′ for t′ > t′. Moreover, there

exists a t > t′ such that HDt(0) > HDt(t) for t < t and HDt(0) < HDt(t) for t > t.
11We can show that V ′(nt) grows at rate [β(1 − δ)2(1 − p)]−1 > 1 unless it is constant. But by the transversality

condition, [β(1− δ)]tV ′(nt) must be bounded, and since β(1− δ)× [β(1− δ)2(1− p)]−1 = [(1− δ)(1− p)]−1 > 1,
this is impossible. Hence the only possibility is V ′(n) = constant.
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Proof. Substituting nt′−1 and nt into the definition of HDt(t
′):

HDt(t
′) =

(1− δ)t−t′p[z∗ − (1− δ)
∑t′−1

τ=0 (1− p)τ (1− δ)τpz∗]∑t
τ=0(1− p)τ (1− δ)τpz∗

HDt(t
′) =

(1− δ)t−t′ [1− p(1− δ)
∑t′−1

τ=0 (1− p)τ (1− δ)τ ]∑t
τ=0(1− p)τ (1− δ)τ

HDt(t
′) =

(1− δ)t−t′ [1− p(1− δ)1−(1−p)t′ (1−δ)t′

1−(1−p)(1−δ) ]

1−(1−p)t+1(1−δ)t+1

1−(1−p)(1−δ)

HDt(t
′) =

(1− δ)t−t′ [δ + p(1− δ)− p(1− δ)[1− (1− p)t′(1− δ)t′ ]]
1− (1− p)t+1(1− δ)t+1

HDt(t
′) =

(1− δ)t

1− (1− p)t+1(1− δ)t+1︸ ︷︷ ︸
A

[(1− δ)−t′δ + (1− δ)p(1− p)t′ ] (B.1)

Inspection of equation (B.1) shows that HDt(t
′) is increasing in t′ for t′ sufficiently large.

Straightforward computation shows thatHDt(0) > HDt(1) given p > δ
(1−δ) . Moreover, if we treat

t′ as continuous and differentiate HDt(t
′) twice with respect to t′, we obtain A[(1− δ)−t′δ[ln(1−

δ)]2 + (1− δ)p(1− p)t′ [ln(1− p)]2] > 0. Thus HDt(t
′) is strictly convex in continuous t′ and has

a global minimum, and in discrete time reaches a minimum for some t′ ≥ 1.

It follows from the first part of the proposition that HDt(0) > HDt(t) for t < t′, hence

t > t′. Next, we can use equation (B.1) to show that the inequality HDt(0) < HDt(t) reduces to

δ+ (1− δ)p < (1− δ)−tδ+ (1− δ)p(1− p)t. From the first part of the proposition the right-hand

side of this inequality is monotonically increasing in t for t > t′. Since, in fact, the right-hand side

of this inequality increases without bound in t, the existence of a t as described in the second part

of the proposition follows. �

Proposition 4. P c
t (c) > P c

t (c′) for all c′ ∈ [0, c− 1], for all t ≥ c.

Proof. We will show that P c
t (c)− P c

t (c′) > 0 for c′ < c, t ≥ c. The proof proceeds by induction.

For the base case t = c, from equation (7) we have P c
c (c) − P c

c (c′) = pxcc(x
c
c − xc

′
c )/Lcc > 0,

because xcc > xc
′
c for c′ < c by equation (5). For the inductive step for period t > c, use equation

(7) to compute P c
t (c)− P c

t (c′) > 0 as

[P c
t−1(c)− P c

t−1(c′)] + [1−
P c
t−1(c)

p
]pxct

xct
Lct
− [1−

P c
t−1(c′)

p
]pxct

xc
′
t

Lct
.
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Let kc =
P ct−1(c)

p
, kc′ =

P ct−1(c′)

p
, mc = xct

xct
Lct

and mc′ = xct
xc
′
t

Lct
. Note that 0 < kc′ < kc < 1 by the

inductive hypothesis. Additionally, 0 < mc′ < mc < 1 because xct > xc
′
t for c′ < c, t ≥ c by

equation (5). Substituting kc, kc′ ,mc and mc′ into the expression above, we have

p{(kc− kc′) + [(1− kc)mc− (1− kc′)mc′ ]} = p{(1−mc)(kc− kc′) + (1− kc′)(mc−mc′)} > 0.

�

Lemma 1. If z∗/N is sufficiently small, xct/L
c
t > xct+b/L

c
t+b for all b ∈ [1, T − c], for all t ≥ c.

Proof. Rearrange the inequality as
Lct+b
Lct

>
xct+b
xct

. From equation (8), we have

Lct+b
Lct

=
N(1− δ)t+b[1− P ct+b−1(0)

p
]x0
t+b +

∑t+b
c′=1 δN(1− δ)t+b−c′ [1− P ct+b−1(c′)

p
]xc
′

t+b

N(1− δ)t[1− P ct−1(0)

p
]x0
t +

∑t
c′=1 δN(1− δ)t−c′ [1− P ct−1(c′)

p
]xc
′
t

.

Note that N factors out of both the numerator and denominator of this expression. Likewise, z∗

factors out of every x, hence z∗ factors out of both the numerator and denominator. Changes in N

or z∗ therefore affect
Lct+b
Lct

only through the terms containing P . From equation (7), we see that we

can make any P arbitrarily small by shrinking z∗/N .

Letting z∗/N approach zero, we have

Lct+b
Lct
≈
N(1− δ)t+bx0

t+b +
∑t+b

c′=1 δN(1− δ)t+b−c′xc′t+b
N(1− δ)tx0

t +
∑t

c′=1 δN(1− δ)t−c′xc′t

=
N(1− δ)t+bx0

t+b +
∑b

a=1 δN(1− δ)t+b−axat+b +
∑t+b

c′=1+b δN(1− δ)t+b−c′xc′t+b
N(1− δ)tx0

t +
∑t

c′=1 δN(1− δ)t−c′xc′t
.

We will show that this last expression is greater than
xct+b
xct

, from which it follows that
Lct+b
Lct

>
xct+b
xct

for z∗/N sufficiently small.

Note that the last term in the numerator of the expression equals the last term in the denominator

of the expression because xc′t+τ = xc
′−τ
t . From this fact and

xct+b
xct

< 1, it follows that a sufficient
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condition for the expression to be greater than
xct+b
xct

is

N(1− δ)t+bx0
t+b +

b∑
a=1

δN(1− δ)t+b−axat+b −N(1− δ)tx0
t

xct+b
xct
≥ 0,

or(1− δ)bx0
t+b +

b∑
a=1

δ(1− δ)b−axat+b − x0
t

xct+b
xct
≥ 0.

Using the fact that (1 − δ)b = 1 −
∑b

a=1 δ(1 − δ)b−a, and dividing through by x0
t , the sufficient

condition becomes

x0
t+b

x0
t

+
b∑

a=1

δ(1− δ)b−a
xat+b − x0

t+b

x0
t

−
xct+b
xct
≥ 0.

Note that by example 1 of Proposition 3, the left-hand side goes to zero as δ goes to zero. For

δ > 0, it follows from equation (5) that
x0t+b
x0t

>
xct+b
xct

, hence the sufficient condition holds. �

Proposition 5. If z∗/N is sufficiently small, P c
t (c) > P c

t (c′) for all c′ ∈ [c+ 1, T ], for all t ≥ c′.

Proof. We will show by induction that P c
t (c) − P c

t (c + b) ≥
∑b−1

τ=0[1 − P ct−τ−1(c)

p
]pxct−τ

xct−τ
Lct−τ

> 0,

b = 1, ..., T − c and t = c+ b, ..., T . We first establish the base case

P c
c+b(c)− P c

c+b(c+ b) ≥
b−1∑
τ=0

[1−
P c
c+b−τ−1(c)

p
]pxcc+b−τ

xcc+b−τ
Lcc+b−τ

.

From repeated applications of equation (7), we have

P c
c+b(c) = P c

c (c) +
b−1∑
τ=0

[1−
P c
c+b−τ−1(c)

p
]pxcc+b−τ

xcc+b−τ
Lcc+b−τ

P c
c+b(c+ b) = pxcc+b

xc+bc+b

Lcc+b
.

Hence, we must show P c
c (c) − pxcc+b

xc+bc+b

Lcc+b
≥ 0, or pxcc

xcc
Lcc
− pxcc+b

xc+bc+b

Lcc+b
≥ 0. Since xc+bc+b = xcc, this

reduces to xcc
Lcc
≥ xcc+b

Lcc+b
or

Lcc+b
Lcc
≥ xcc+b

xcc
, which follows from Lemma 1.

Now consider the inductive step

P c
t (c)− P c

t (c+ b) ≥
b−1∑
τ=0

[1−
P c
t−τ−1(c)

p
]pxct−τ

xct−τ
Lct−τ

> 0.
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Application of equation (7), and then of the inductive hypothesis, yields

P c
t (c)− P c

t (c+ b) = P c
t−1(c)− P c

t−1(c+ b)− [1−
P c
t−1(c+ b)

p
]pxct

xc+bt

Lct
+ [1−

P c
t−1(c)

p
]pxct

xct
Lct

≥
b−1∑
τ=0

[1−
P c
t−τ−2(c)

p
]pxct−τ−1

xct−τ−1

Lct−τ−1

− [1−
P c
t−1(c+ b)

p
]pxct

xc+bt

Lct
+ [1−

P c
t−1(c)

p
]pxct

xct
Lct

=
b−1∑
τ=0

[1−
P c
t−τ−1(c)

p
]pxct−τ

xct−τ
Lct−τ

+ [1−
P c
t−b−1(c)

p
]pxct−b

xct−b
Lct−b

− [1−
P c
t−1(c+ b)

p
]pxct

xc+bt

Lct
.

Therefore we must prove

[1−
P c
t−b−1(c)

p
]pxct−b

xct−b
Lct−b

− [1−
P c
t−1(c+ b)

p
]pxct

xc+bt

Lct
≥ 0.

Noting that xct−b = xc+bt , this reduces to

[1− P ct−b−1(c)

p
]Lct

[1− P ct−1(c+b)

p
]Lct−b

≥ xct
xct−b

.

Letting z∗/N become arbitrarily small, we can make
1−

Pct−b−1(c)

p

1−
Pct−1(c+b)

p

arbitrarily close to one. Since

Lct
Lct−b

>
xct
xct−b

by Lemma 1, the result follows. �

Proposition 6. Consider a firm of age T ≥ 2. If z∗/N is sufficiently small and δ[1+δp/2(1−p)] <
1/2, then Sct (c

′) reaches its maximum over cohorts c′ ∈ [1, T ] for cohort c for at least the two most

recent cohorts, i.e., c ∈ [T − 1, T ].

Proof. For c = T , the proposition follows from Proposition 4 and equation (9). For c = T − 1,

the proposition follows from Proposition 4 and equation (9) for cohorts c′ ∈ [1, T − 1]. It remains

to be shown that ST−1
T (T − 1) > ST−1

T (T ). We have ST−1
T (T−1)

ST−1
T (T )

=
PT−1
T (T−1)

PT−1
T (T )

(1 − δ), so we need
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PT−1
T (T−1)

PT−1
T (T )

> 1
1−δ . Using equation (7), we have

P T−1
T (T − 1)

P T−1
T (T )

=
P T−1
T−1 (T − 1) + [1− PT−1

T−1 (T−1)

p
]pxT−1

T xT−1
T /LT−1

T

P T−1
T (T )

=
pxT−1

T−1x
T−1
T−1/L

T−1
T−1

pxT−1
T xTT/L

T−1
T

+
[1− PT−1

T−1 (T−1)

p
]pxT−1

T xT−1
T /LT−1

T

pxT−1
T xTT/L

T−1
T

=
xT−1
T−1L

T−1
T

xT−1
T LT−1

T−1

+ [1−
P T−1
T−1 (T − 1)

p
]
xT−1
T

xTT

=
xT−1
T−1L

T−1
T

xT−1
T LT−1

T−1

+ [1−
P T−1
T−1 (T − 1)

p
][1− (1− δ)p],

where we have used equation (5). From Lemma 1, it follows that P
T−1
T (T−1)

PT−1
T (T )

≥ 1 + 1− (1− δ)p for

z∗/N sufficiently small. Algebra (available on request) then shows that the condition 2−(1−δ)p >
1

1−δ reduces to δ[1 + δp
2(1−p) ] <

1
2
. �

Proposition 7. If z∗/N is sufficiently small and T − c is sufficiently large, Sc
′
T (T ) > Sc

′
T (c′) for all

cohorts c′ ∈ [1, c].

Proof. Using equation (9), we can reduce the inequality for cohort c, ScT (T ) > ScT (c), to P c
T (T ) >

P c
T (c)(1 − δ)T−c. The right-hand side of this inequality can be made arbitrarily small for T − c

sufficiently large because P c
T (c) is bounded from above by p. On the left-hand side of the inequal-

ity, we use equation (7) to obtain P c
T (T ) = pxcT

xTT
LcT

= pxcT
z∗

LcT
. xcT is bounded from below by x̄. LcT

is bounded from above by Nz∗, the maximal number of desired meetings with unknowns by all

agents in the firm. Thus P c
T (T ) is bounded from below by px̄ z∗

Nz∗
= px̄/N .

This establishes the proposition for cohort c. Intuitively, the proposition should extend to co-

horts c′ ∈ [1, c − 1]: the number of agents remaining in each of these cohorts is smaller than for

cohort c, hence the own-cohort share of ego’s network should be even smaller than for cohort c.

(Note that if we were to weaken Assumption 2 by decoupling firm hiring from layoffs, it would

be possible for earlier cohorts to be larger than later cohorts so we could not extend Proposition 7

to all cohorts c′ ∈ [1, c − 1].) We will show that ScT (T ) > ScT (c) implies Sc−1
T (T ) > Sc−1

T (c− 1)

for T − c sufficiently large and z∗/N sufficiently small. The proof can then be repeated to

show Sc−1
T (T ) > Sc−1

T (c− 1) implies Sc−2
T (T ) > Sc−2

T (c− 2), . . . , S2
T (T ) > S2

T (2) implies

S1
T (T ) > S1

T (1).
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From equation (9) we see that ScT (T ) > ScT (c) implies P c
T (T ) > P c

T (c)(1 − δ)T−c. We will

show that this implies P c−1
T (T ) > P c−1

T (c− 1)(1 − δ)T+1−c, from which Sc−1
T (T ) > Sc−1

T (c− 1)

follows from equation (9). Specifically, we will show that P c−1
T (T ) can be made arbitrarily close

to P c
T (T ) and that P c−1

T (c− 1) < P c
T (c) or P c−1

T (c− 1) can be made arbitrarily close to P c
T (c).

Since P c
T (T )/P c

T (c) > (1 − δ)T−c, it follows that P c−1
T (T )/P c−1

T (c− 1) > (1− δ)(1− δ)T−c =

(1− δ)T+1−c.

From equation (7) we have P c
T (T ) = pxcT

xTT
LcT

and P c−1
T (T ) = pxc−1

T
xTT
Lc−1
T

, where

LcT = N(1− δ)T
[
1−

P c
T−1(0)

p

]
x0
T +

T∑
c′=1

δN(1− δ)T−c′
[
1−

P c
T−1(c′)

p

]
xc
′

T

and

Lc−1
T = N(1− δ)T

[
1−

P c−1
T−1(0)

p

]
x0
T +

T∑
c′=1

δN(1− δ)T−c′
[
1−

P c−1
T−1(c′)

p

]
xc
′

T

by equation (8). We then have P c−1
T (T )/P c

T (T ) = (xc−1
T /xcT )(LcT/L

c−1
T ). From equation (5) we

see that xc−1
T /xcT becomes arbitrarily close to one as T − c grows large. Now consider LcT/L

c−1
T .

Note that N factors out of both the numerator and denominator of this ratio. Likewise, z∗ factors

out of every x, hence z∗ factors out of both the numerator and denominator. Changes in N or z∗

therefore affect LcT/L
c−1
T only through the terms containing P . From equation (7), we see that we

can make any P arbitrarily small by shrinking z∗/N . It follows from our expressions for LcT and

Lc−1
T that we can make the ratio LcT/L

c−1
T arbitrarily close to one by shrinking z∗/N .

Finally, consider the ratio P c−1
T (c− 1)/P c

T (c). From equation (7), we can write

P c−1
T (c− 1) = pxc−1

c−1

xc−1
c−1

Lc−1
c−1

+

[
1−

P c−1
c−1 (c− 1)

p

]
pxc−1

c

xc−1
c

Lc−1
c

+

[
1− P c−1

c (c− 1)

p

]
pxc−1

c+1

xc−1
c+1

Lc−1
c+1

+ . . .

+

[
1−

P c−1
T−1(c− 1)

p

]
pxc−1

T

xc−1
T

Lc−1
T

and

P c
T (c) = pxcc

xcc
Lcc

+

[
1− P c

c (c)

p

]
pxcc+1

xcc+1

Lcc+1

+

[
1−

P c
c+1(c)

p

]
pxcc+2

xcc+2

Lcc+2

+ . . .

+

[
1−

P c
T−1(c)

p

]
pxcT

xcT
LcT

.
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Note that each term in the expression for P c
T (c) corresponds to the term in the expression for

P c−1
T (c− 1) for the preceding period. Consider the corresponding terms [1−P c−1

c+b−2(c−1)

p
]pxc−1

c+b−1

xc−1
c+b−1

Lc−1
c+b−1

and [1 − P cc+b−1(c)

p
]pxcc+b

xcc+b
Lcc+b

, b = 1, . . . , T − c. Note that xc−1
c+b−1 = xcc+b. Also note that

(z∗)2/z∗N = z∗/N factors out of every term, so that changes inN or z∗ can only affect P c−1
T (c− 1)/P c

T (c)

through P c−1
c+b−2(c− 1) and P c

c+b−1(c). As above, we can make P c−1
c+b−2(c− 1) and P c

c+b−1(c) arbi-

trarily small by shrinking z∗/N . The difference between the numerators of the corresponding

terms can therefore be made arbitrarily small.

Now consider the difference between the denominators of the corresponding terms. From

equation (8), we have

Lc−1
c+b−1 = N(1−δ)c+b−1

[
1−

P c−1
c+b−2(0)

p

]
x0
c+b−1+

c+b−1∑
c′=1

δN(1−δ)c+b−1−c′
[
1−

P c−1
c+b−2(c′)

p

]
xc
′

c+b−1

Lcc+b = N(1− δ)c+b
[
1−

P c
c+b−1(0)

p

]
x0
c+b +

c+b∑
c′=1

δN(1− δ)c+b−c′
[
1−

P c
c+b−1(c′)

p

]
xc
′

c+b.

By shrinking z∗/N , Lc−1
c+b−1 andLcc+b can be made arbitrarily close to L̃c−1

c+b−1 and L̃cc+b, respectively,

which are given by

L̃c−1
c+b−1 = N(1− δ)c+b−1x0

c+b−1 +
c+b−1∑
c′=1

δN(1− δ)c+b−1−c′xc
′

c+b−1

and

L̃cc+b = N(1− δ)c+bx0
c+b +

c+b∑
c′=1

δN(1− δ)c+b−c′xc′c+b.

We have

L̃c−1
c+b−1 − L̃

c
c+b = N(1− δ)c+b−1[x0

c+b−1 − (1− δ)x0
c+b]− δN(1− δ)c+b−1x1

c+b

= N(1− δ)c+b−1[x0
c+b−1 − (1− δ)x0

c+b − δx1
c+b] > 0

since

x0
c+b−1 − (1− δ)x0

c+b − δx1
c+b = (1− δ)(x0

c+b−1 − x0
c+b) + δ(x0

c+b−1 − x1
c+b)

= (1− δ)(x0
c+b−1 − x0

c+b) > 0.
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We have now shown that, for z∗/N sufficiently small,

[
1−

P c−1
c+b−2(c− 1)

p

]
pxc−1

c+b−1

xc−1
c+b−1

Lc−1
c+b−1

<

[
1−

P c
c+b−1(c)

p

]
pxcc+b

xcc+b
Lcc+b

, b = 1, . . . , T − c.

The same algebra that proves L̃c−1
c+b−1−L̃cc+b > 0 also provesLc−1

c−1−Lcc > 0, hence pxc−1
c−1x

c−1
c−1/L

c−1
c−1 <

pxccx
c
c/L

c
c. Thus for z∗/N sufficiently small, all corresponding terms in the expressions for P c−1

T (c− 1)

and P c
T (c) are smaller for the former. However, the expression for P c−1

T (c− 1) also contains the

additional term [1 − P c−1
T−1(c−1)

p
]pxc−1

T xc−1
T /Lc−1

T . Suppose that the presence of this term makes the

ratio P c−1
T (c− 1)/P c

T (c) greater than one. In this case, we can make P c−1
T (c− 1)/P c

T (c) arbitrarily

close to one by increasing T − c and thereby increasing the number of terms in the expressions for

P c−1
T (c− 1) and P c

T (c). �

Derivation of equation (12).

From equation (10) and the equations of motion we obtain

∂V

∂nt−1

= (1− δ)yH
2
− (1− δ)c′(xt + rt + (1− δ)nt−1) + β(1− δ)[(1− δ)∂V

∂nt
+ δ

∂V

∂gt
] + βδ2V ′u,

where V ′u is the marginal value of adding contacts. We also have

∂V

∂gt−1

= β(1− δ)(1− ψ)
∂V

∂gt
+ βδ(1− ψ)V ′u. (B.2)

It is straightforward to show that if V ′u is constant then an affine solution V (nt−1, gt−1) =

∂V
∂n
nt−1 + ∂V

∂g
gt−1 + V (0, 0) exists where ∂V

∂n
and ∂V

∂g
are constants (hence ∂V

∂nt
= ∂V

∂nt−1
and ∂V

∂gt
=

∂V
∂gt−1

). Moreover, since nt and gt are bounded this solution satisfies the transversality condition.

We see that the equations above have a recursive structure. Given a constant V ′u, we can solve for

a constant ∂V
∂g

. Given constants V ′u and ∂V
∂g

, we can solve for a constant ∂V
∂n

. We thereby obtain

∂V

∂n
=

(1− δ)(1− p)yH−yL
2

+ βδ2V ′u[1 + β(1−δ)(1−ψ)
1−β(1−δ)(1−ψ)

]

1− β(1− δ)2(1− p)
,

which is equation (12) in the text.

Proposition 9. If the marginal value of adding contacts V ′u is constant, xt decreases monotonically
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with time if the firm’s hiring of ego’s contacts satisfies

[1− (1− δ)(1− p)]rt − rt+1 < (1− δ)t+1(1− p)tpẑ∗, where ẑ∗ is determined by equation (13).

Proof. Using the fact that ẑ∗ = xt + rt + (1 − δ)nt−1, we have xt = ẑ∗ − (1 − δ)nt−1 − rt and

xt+1−xt = −(1−δ)(nt−nt−1)−(rt+1−rt). It can be shown that nt−nt−1 = (1−δ)t(1−p)tpẑ∗+
(1−p)rt. Substituting, we have xt+1−xt = −(1−δ)t+1(1−p)tpẑ∗+[1− (1−δ)(1−p)]rt−rt+1.

Hence xt+1 < xt if [1− (1− δ)(1− p)]rt − rt+1 < (1− δ)t+1(1− p)tpẑ∗. �

If V (n, g) is defined by equation (10), V ′′u < 0 implies ∂2V/∂n∂g ≤ 0.

Proof. 12 Since the presence of rt has no bearing on whether V has the desired property, we drop

it for simplicity. We further streamline notation by rewriting equation (10) as

V (n, g) = max
x
{a(1− δ)n+ bx− c(x+ (1− δ)n) + β((1− δ)V (n′, g′) + δVu(g

′)} ,

where a = yH
2

, b = pyH+(1−p)yL
2

, and

n′ = (1− δ)n+ px,

g′ = (1− ψ)g + δn.

Letting TV be the right-hand side of this Bellman equation, the true value function satisfies TV =

V , that is, it is a fixed point of T . It can be shown that n and g are bounded, so that (n, g) ∈
[0, n̄]× [0, ḡ]. Letting X be the space of all continuous functions on [0, n̄]× [0, ḡ], it can be shown

that T : X → X is a contraction. By the contraction mapping theorem, TV = V has a unique

solution, and V = limm→∞ T
mV0, where V0 is any function (typically chosen to be 0).

Now to show that ∂2V/∂n∂g ≤ 0 for the true value function, it suffices to show that for any

(concave) V , we have
∂2V

∂n∂g
≤ 0 =⇒ ∂2TV

∂n∂g
≤ 0. (B.3)

To see this, suppose we show (B.3). Let V0 = 0 and Vm = TVm−1 for all m ≥ 1. Since the

zero function satisfies ∂2V/∂n∂g ≤ 0, it follows from induction that ∂2Vm/∂n∂g ≤ 0. Letting

m→∞, since Vm converges to the true value function V , we obtain ∂2V/∂n∂g ≤ 0.

12We thank, without implicating, Alexis Toda for help with this proof.
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Take any concave function V with ∂2V/∂n∂g ≤ 0, and rewrite the first-order condition (11) as

0 = b− c′(x+ (1− δ)n) + β(1− δ)p∂V
∂n

(n′, g′). (B.4)

Let x∗(n, g) be the solution of this equation. We can also rewrite equation (B.2) as

∂TV

∂g
= β(1− ψ)

(
(1− δ)∂V

∂g
(n′, g′) + δV ′u(g

′)

)
,

where n′ = px∗(n, g) + (1− δ)n. Differentiating this expression with respect to n, we obtain

∂2TV

∂n∂g
= β(1− ψ)

(
(1− δ)

(
∂2V

∂n∂g
(n′, g′)(p

∂x∗

∂n
+ 1− δ) + δ

∂2V

∂g2
(n′, g′)

)
+ δ2V ′′u (g′)

)
.

For notational simplicity let V11 ≡ ∂2V/∂n2, V12 ≡ ∂2V/∂n∂g, and V22 ≡ ∂2V/∂g2. Then the

above equation becomes

(TV )12 = β(1− ψ)((1− δ)(V12(p∂x∗/∂n+ 1− δ) + δV22) + δ2V ′′u (g′)).

Since β > 0, 0 < ψ < 1, 0 < δ < 1, and V ′′u < 0, to show (TV )12 ≤ 0, it suffices to show

V12(p∂x∗/∂n+ 1− δ) + δV22 ≤ 0. (B.5)

We establish that (B.5) holds in four steps. First, we show that ∂x∗/∂n < 0. Differentiating

the first-order condition (B.4) with respect to n, we obtain

0 = −c′′(∂x∗/∂n+ 1− δ)+β(1− δ)p(V11(p∂x∗/∂n+ 1− δ) + δV12), (B.6)

or (c′′ − β(1− δ)p2V11)∂x∗/∂n = −(1− δ)(c′′ − β(1− δ)pV11 − βδV12).

Since c′′ > 0 (increasing marginal cost), V11 < 0 (concavity),13 and V12 ≤ 0 (assumption), it

follows that ∂x∗/∂n < 0.

Second, we show that ∂x∗/∂n + 1 − δ < 0. Since we already know ∂x∗/∂n < 0, it follows

13Suppose V11 = 0 (or V22 = 0). The determinant condition for concave functions V11V22 − V 2
12 ≥ 0 then implies

V12 = 0, and (B.5) holds.
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from 0 < p < 1 that

∂x∗/∂n+ 1− δ < p∂x∗/∂n+ 1− δ.

Using this inequality together with (B.6), since V11 < 0 we obtain

0 = −c′′(∂x∗/∂n+ 1− δ) + β(1− δ)p(V11(p∂x∗/∂n+ 1− δ) + δV12)

< −c′′(∂x∗/∂n+ 1− δ) + β(1− δ)p(V11(∂x∗/∂n+ 1− δ) + δV12), or

(c′′ − β(1− δ)pV11)(∂x∗/∂n+ 1− δ) < β(1− δ)pδV12.

Since c′′ > 0, V11 < 0, and V12 ≤ 0, we obtain ∂x∗/∂n+ 1− δ < 0.

Third, we show that V11(p∂x∗/∂n+ 1− δ) + δV12 < 0. Since c′′ > 0 and ∂x∗/∂n+ 1− δ < 0

by the previous step, it follows from (B.6) that

β(1− δ)p(V11(p∂x∗/∂n+ 1− δ) + δV12) = c′′(∂x∗/∂n+ 1− δ) < 0.

Therefore we obtain V11(p∂x∗/∂n+ 1− δ) + δV12 < 0.

Finally, we rewrite the left-hand side of (B.5):

V12(p∂x∗/∂n+ 1− δ) + δV22 =
V12

V11

(V11(p∂x∗/∂n+ 1− δ) + δV12) + δ
V11V22 − V 2

12

V11

.

Since V11 < 0, V12 ≤ 0 (assumption), and by the previous step V11(p∂x∗/∂n+ 1− δ) + δV12 < 0,

it follows that the first term is nonpositive. By the determinant condition for concave functions

V11V22−V 2
12 ≥ 0, hence the second term is also nonpositive. Therefore V12(p∂x∗/∂n+1−δ)+δV22

is the sum of nonpositive terms, and (B.5) holds. �
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